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Post-publication note by author: 

 

I regret being unable to send you a copy of the final version of my article as  published on-line on 

11/06/15; this is for copyright restrictions which a number of supportive members of the statistics 

community are currently challenging. 

 

However a positive outcome of the dispute is that I can presume myself at liberty to send to anyone I 

choose my original version below. This was submitted to Teaching Statistics on 18/11/14, and was 

considerably longer, mainly because the Appendix was censored before publishing version. I speculate, 

but was not told explicitly told, that this because it is logically incompatible with Taleb’s exposure of the 

‘ludic fallacy’ that I refer to on my p5 below. 

 

More positive still, it provides me with the opportunity to share with others an appeal for help: ‘what can 

we teach about Bayes?’. The fundamental difficulty is finding examples where the input probabilities are 

independent; this axiomatically is not the case where one of them is subjective, as in the Cab-problem. At 

the back of my mind are examples of two apparently promising areas:- 

 

1) Where the probabilities are provided by objective measures. For example, locating the best 

position for a new underwater oil rig might be obtained from data on (a) distance from the 

nearest successful extant rig and (b)  composition of a sample from the seabed.   

2) Where information is flowing in too fast for the human mind to process it, e.g. in fighter or drone 

control.  

My search on Google has revealed nothing I see useful for teaching purposes. But I’d be delighted to 

hear from any colleague who knows better, and might be interested in writing a joint article on this 

vitally important topic.    
 

 

Mike Bedwell  

Ukrainain Education Center, Kyiv 

 

Michael_Bedwell@hotmail.com 
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Abstract 
 

This note describes my experience in encouraging the 'deep learning' that has long been 

advocated in the pedagogic literature. My students have typically studied statistics only as part of 

another discipline, such as economics, business or law. So while they have mostly been aged 17 

or over, my approach has necessarily presumed only elementary mathematics and thus should be 

adaptable to younger people.  

 

My main example is a problem story constructed by Amos Tversky in the 1970s to evaluate 

human beings’ intuitions about statistical inference, and which in 2012 was revisited in a best-

seller by his colleague, the Nobel prize-winner Daniel Kahneman. In his book he describes this 

problem as 'standard'  and .unequivocally answers with a simple fixed-point number.  I describe 

how I have encouraged my students to challenge the certainty of this assertion by identifying 

ambiguities unexplained  in the story; in the process I strive to stimulate individuals’ Thinking, 

Fast and Slow, to use the title of  Kahneman's book, arguing that his 'slow thinking' is a 

prerequisite of deep learning. 

 

While Kahneman more fully describes the problem as one of  ' Bayesian inference’, his story can 

be de-constructed  without  reference to the work of Thomas Bayes. However, the bitterest 



conflicts in the statistical academic community continue to arise from the Bayes-frequentist 

controversy; this we cannot expect our students to resolve, but we owe it them to explain its 

causes. So my article includes as an appendix a ‘Bayes Icebreaker’ where I show an analogy 

between the cab story and an exercise previously described in Teaching Statistics.  

 

Introduction. 
 

Much of my recent teaching has been to a 17+ age group of Ukrainian students, eager to 

understand western education. They often want to to take direct  advantage of it, their first step 

being to prepare for such computer-implemented tests as the TOEFL, GRE and GMAT.  The 

principle of 'deep learning' is often novel to these young people; even though born well after the 

break-up of the USSR, they have usually been taught in schools and universities where the 

culture has remained one of rote-learning, corruption and nepotism.  

 

The internet has progressively become my major tool in helping these students; the others have 

included two best-selling paperbacks that are cheap to buy but which have proved priceless in 

enlightenment, to me as much as my students. For these two books have provoked me to 

ruminate on my own  Thinking, Fast and Slow, the title of one of them (Kahneman, 2012 ) . One 

clear conclusion I have come to is that deep learning can and should be inculcated in much 

younger people, and that as teachers of statistics we are well placed to take the lead.. I will argue 

that the level of mathematics needed is within the grasp of even primary school children 

anywhere in the world. 

 

Discussion of the Pedagogy  
  

As might be  crudely explained, the ‘slow thinking' of Kahneman's title corresponds roughly to 

the popular adages 'count to ten before replying' or ‘engage brain before opening mouth’, and I 

have interpreted it as a prerequisite for the ‘deep learning’ that the pedagogic literature has long 

advocated. Below is a problem from Kahneman's book which I have regularly posed to my 

students to stimulate such thinking, and which he and his co-worker Amos Tversky had 

developed in their research some years earlier: 

 

‘A cab was involved in a hit-and-run accident at night. 

Two Cab companies, the Green and the Blue, operate in the city. 

You are given the following data: 

• 85% of the cabs in the city are Green and 15% are Blue. 

• A witness identified the cab as Blue. The court tested the reliability of the witness under 

the circumstances that existed on the night of the accident and concluded that the witness 

had correctly identified each one of the two colors 80% of the time and failed 20% of the 

time. 

What is the probability that the cab involved in the accident was Blue rather than Green?  

‘ 

(Tversky and Kahneman, 1980, in Kahneman, 2012, pp166, 167)  

 

Whenever possible, it has been my practice to have this problem printed out, double-spaced and 

with wide margins to allow ample room for annotations. For younger students I would imagine it 

necessary to have some discussion of the meaning of' 'percent' and 'probability', although in the 

UK, most children will have acquired some  familiarity with these words; only too early in their 

lives they are exposed both to TV lottery shows in the home and to state-imposed, statistically-

processed testing at school.  

 



With my maturer students, I immediately get them into groups and then walk round amongst 

them, eliciting and answering questions.  I encourage those engrossed in any electronic device to 

find the problem on Google, especially when I suspect them to be indulging in some sort of 

private communication. Elsewhere (Bedwell, 2009) I have argued that technology in the 

classroom serves only to disrupt the all-too-precious time we can spend in face-to-face 

discussion with our students. I expect mine to behave accordingly. 

 

Discussion of the Problem 
 

My approach is to put to each group the following questions:- 

 

What is your answer to Tversky's problem? 

 

Lack of motivation is common among the students I have known in Ukraine, where I have 

mostly taught in private universities; these have their admission policy determined less by 

students' academic interest than by the income of their parents. As a statistical aside, I have 

found this problem diminishes with class size; the greater the number of students, the higher the 

probability of there being among them enthusiasts with whom the others learn to compete. 

Nonetheless, I have to be prepared to deal with such answers as 'Dunno', or the Slavic 

equivalent; after indeed mentally biting my tongue in the effort to 'think slowly', I try as a prompt 

asking ' Do you mean you don't have enough information to decide – or that “it all depends” ? '.  

 

Less discouragingly, other students will ask ' what formula should we use?'.  I parry this by 

writing on the whiteboard such numerical answers as I have gleaned from the rest of the class, all 

of whom I direct to the next question. 

 

How do you imagine the detail of the test undergone by the witness? 

 

I am aware that I should allow time for the students to develop their own scenarios, but to date 

have lacked the patience to do other than steer them to the following of my own contrivance: 15 

of the city’s Blue cabs and 85 of the Green were paraded in random order before the witness. She 

was envisaged as calling out in turn the colour she judged the cabs to be, so that each could be 

labeled with either a ‘B’ or a ‘G’ sticker, before being directed to one corner of a rectangular 

parking area. This has space for 10 cabs in each row and each column, 100 in all. To facilitate 

discussion of the diagram I’d sketch on the whiteboard, we imagined the park to be oriented on 

the cardinal directions so, for example, Blue cabs wrongly identified as Green ended up in the 

NW corner. My students have then had little difficulty in using the quantitative information in 

Tversky's story to calculate that number as 20% * 15% * 100 = 3, as shown Fig 1(a), before 

similarly confirming the numbers shown in the other three corners. The precision with which the 

reliability was specified in the problem, and the simplicity of the subsequent arithmetic once 

inspired a student to speculate that 'this was probably the scenario the experimenters had in 

mind'.  I return to this comment in discussing the next question. 
 

                    

                    

     3          4       

          

N 

         

                  

     68           75    

                    

                    

                    

 12          11       

                            

                    



                    

                                

     17           10    

                    

                    

 Blue Green     Blue Green  

                    

    (a)           (b)     

 Outcomes from original problem    Outcomes from another 

feasible scenario 

 

                    

 Figure 1. Final disposition of Cabs in the Car-Park 

 

Why should the witness prove equally reliable with both colours? 

 

Many years living in a student hall of residence have made me only too aware of the fire alarm 

dilemma: the more sensitive the setting of the detector, the smaller the risk of  it failing to warn 

of a real emergency, but the greater the incidence of false alarms. By analogy, the witness will 

generally prove better at detecting one colour than the other, so a perfectly feasible result of the 

test could be the values in Fig. 1(b). Some students have objected that here the numerical values 

do not give a simple, whole-number value for the reliability, as was the case in the original 

problem. I address this by asking; ‘are the reliability values in either case experimental data, or 

are they the calculated outcomes from such data?’ They then appreciate that the reliability value 

of 80% in the original problem can only have been calculated from the results from the ‘test’, 

even if its construction  in Tversky's imagination had been different from our own. I have found 

no need to introduce here any new terminology such as 'Type I 'and 'Type II' errors. 

 

I am further exploring a boundary case, not shown diagrammatically, which has a third set of test 

results; my the aim is to explicate one of the common fallacies reported by Falk and Greebaum 

(1995, pp 81-82), namely that of applying to problems of inference arguments that are valid only 

in deductive logic. In this scenario we suppose the witness’s reliability to increase to 100% when 

identifying Blue, but to remain less than 100% when identifying Green. We can express this as 

two conditional statements: 

1) “If the witness says ‘green’, the cab is certainly Green”. But if the test organizers know the 

cab to be Blue, then they deduce that the witness is certainly wrong.  

2) “If the witness says ‘blue’, the cab is probably Blue”. But if the test organizers know the cab 

to be Green, they should again deduce that the witness is certainly wrong,  

However, subjects often conclude in (2) that the witness is only probably wrong, in the mistaken 

belief that any conclusion is subject to the same measure of doubt as the complement of the 

conditional statement. This is a fallacy which Falk and Greenbaum report as prevalent even 

among professional statisticians. 

 

I used to make a practice of pointing out that the E-W division of the park (depicted by the line 

running N-S in the diagram) could be marked out before the test, which is why the base- rate is 

often called the ‘Prior’. However, I shall henceforth soft-pedal on this, having only recently 

appreciated from the writings of Falk (1989, p 178) that a conditioning probability does not 

necessarily have to precede the acquisition of experiential evidence.  

More importantly, I find no difficulty in provoking students to question the plausibility of what 

they are trying to imagine; as Falk (1989, p 175) points out, there is inevitable ‘ambiguity about 

the “given” in probability story-problems’. Even if ‘the conditions that existed on the night of the 

accident’ can be preserved throughout the parade, there is an obvious problem of temporality: 

will the condition of the witness not change, during both the interval between the accident and 

the test, as well as in the course of the test itself? Won’t her power of discrimination then be 



either improving with experience, or deteriorating through boredom, thus invalidating the 

assumption that her judgments during the test were representative of her judgment at the time of 

the accident? 

. 

Why should the witness’s reliability be independent of the base rate? 

 

 To discuss this question, I put two others to the students:  

• ‘Have you ever been to New York? 

• What colour are most cabs in New York? 

Even those who answer ‘No’ to the first question universally answer ‘Yellow’ to the second, and 

the class readily grasps that any answer to Tversky's question that is based on the numbers in Fig 

1(a) must rest on the strong assumption that experimental evidence – here the witness’s 

reliability  -- is independent of the base rate. To drive the point home we replace “Green’ in the 

original story with ‘Yellow’; then, as one student put it, ‘I can almost hear the witness asserting 

in court “yes, of course I know that most cabs are yellow, that’s why I’m so sure that the cab I 

saw was different” ’. Yet in his book, Kahneman states unequivocally that the ' correct answer ' 

to this ‘standard problem’ is 41%, which from Fig. 1(a) we can check as 

 

                {12/ (12+17)}  x 100% 

 

By contrast, most of my students have given values close to the witness’s ‘reliability’ score of 

80%. This is  in common with most of the subjects in Tversky's original experiment, whom 

Kahneman accuses of 'base-rate neglect' (Kahneman 2012, p88), and hence concludes that we 

human beings are by intuition imperfect statisticians. But perhaps Tversky and Kahneman are no 

better than the rest of us? 
 
Conclusion 
 

I used to invoke Tversky and Kahneman’s Cab problem in introducing Bayes’s formula to my 

class, but hope to have shown the story's  effectiveness in promoting deep learning without 

mention of Bayesianism. This is a highly controversial area that has been more thoroughly 

explicated by others, notably Falk (1989, pp180-182) ; writing well after the first publication of 

the cab problem, she and a colleague (Falk & Greenbaum, 1995,  p91) concluded that 'no single 

procedure can be offered to replace that ritual; surely not any mechanical  recipe'.  Their 'ritual' 

and 'recipe' refer to hypothesis testing, which necessarily subsumes Thomas Bayes's theories. 

Surprisingly, however, the authors do award Bayes the accolade of referring to his theorem 

(p78), a term avoided by Kahneman(2012) who instead speaks of Bayes's rule (p166) and of 

Bayesian statistics (p154), thinking (p169) and reasoning (p172).  Teachers, at grade-school 

level at least, could be forgiven for deciding that Bayesianism is a minefield where they should 

fear to tread. 

 

However, the choice is not open to that majority of Western teachers who are constrained by 

syllabuses which they may aspire to influence,  but which are nonetheless state-imposed. 

Moreover, Googling ‘Conflicts in the Classroom’ will reveal the controversies already extant in 

the  classroom throughout all stages of education, at least in the Anglosphere. Their causes are 

rooted not in what is taught, but in racism and sexism; while it is in this context that  Varmi-

Joshi (2007),  for instance, has asserted that ‘…teaching controversial issues is all-important’,  

there is no reason to suppose that this should apply to the substance of our teaching any less than 

its conduct.   

 

So. feeling it imperative to grasp the nettle of Bayesianism with at least my abler students, I  

direct them to another best-selling paperback, The Black Swan, by Nicolas Taleb (2008).  



Ironically, this is despite his making not a single reference to Bayes; rather it is because he draws 

extensively on  Tversky and  Kahneman’s work while writing dismissively about statistics and 

statisticians in general.  

 

More particularly, among the sins Taleb lays at statisticians' door is what he dubs the ‘ ludic 

fallacy’ (Taleb, 2008, pp122-123); by this he means that there is nothing to be learnt about the 

untidy, inferential 'real' world from games involving dice or other artifacts of randomness.  

Given that it is precisely the comparison to such artifacts that forms the bedrock of statistical 

hypothesis testing, it is vital for our students -- indeed, for all of Taleb’s readers -- to confute this 

as one of the more outrageous of his claims. So once embarked on the teaching Bayesianism, I 

call on the dice-based ‘Bayes Icebreaker’ developed by Jessop (2010); in the Appendix I show 

how this can be related to Tversky's cab-story. 

 

Though often using statisticians as subjects, in his book Kahneman (2012) nowhere describes 

himself as a statistician. But a question he might ask in discussing the base-rate bias (pp 146-

150) is ' Are statisticians likely to be in the majority of people who read either my book or 

Taleb's?'  The answer is surely 'no'.   Identifying the intellectual conflicts latent in these two 

books in itself stimulates students' deep learning. Indeed, this is a message we teachers can 

proselytize more widely whenever these books are mentioned in social conversation. 

Axiomatically, as best-sellers, they often are.  

 

Appendix 

 

 Bayes Ice-Breaker 

 

The table in Fig 2 below is an adaption of the table in the  'Ice-breaker' developed by Jessop  

(2010). In the original. Jessop considers three six-sided dice one with the faces inscribed with 

 

Constituents of sample Space                

Evidence Vowel Consonant Sum        

NATHAN 2 4 6   Vowel    

ANTHEA 6 6 12  2    6  

 Likelihoods            

Evidence Vowel Consonant Base 

Rates 

       

NATHAN 2/6 4/6 1/3        

ANTHEA 6/12 6/12 2/3        

     Consonant   

 

Figure 2. Jessop’s Icebreaker with two Antheas and 

one Nathan 

 4    6  

       

       

       

 Nathan Anthea         

 

 
tossed, the forename NATHAN, and two with the name ANTHEA. The problem is to calculate 

the relative diagnostic worth of each of the letters A-E-H-T-N when displayed after tossing just 

one of the three dice picked at random:  if for example an N appears, the chances of either name 

are 50:50, while an E makes ANTHEA a 100% certainty. This nicely illustrates Bayes's formula.  

To permit a comparison with the cab problem, I reduce the evidence to the Vowel/Constant 

dichotomy. The table in Fig 2 thus corresponds to Jessop’s Tables 1 and 2, while the diagram on 



the right shows the ‘cab-park’ equivalent of his problem, From either the tables or the diagram, 

we readily deduce that the probability of the dice being Anthea is 6/ (6+2) = 75% if a vowel is 

tossed, but only 6/ (6+4) = 60% in the case of a consonant.   
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